Abstract
Abstract In this paper, a high-order approximation to Caputo-type time-fractional diffusion equations (TFDEs) involving an initial-time singularity of the solution is proposed. At first, we employ a numerical algorithm based on the Lagrange polynomial interpolation to approximate the Caputo derivative on the nonuniform mesh. The truncation error rate and the optimal grading constant of the approximation on a graded mesh are obtained as min{4−α,rα} and (4−α)/α, respectively, where α∈(0,1) is the order of fractional derivative and r≥1 is the mesh grading parameter. Using this new approximation, a difference scheme for the Caputo-type time-fractional diffusion equation on the graded temporal mesh is formulated. The scheme proves to be uniquely solvable for general r. Then, we derive the unconditional stability of the scheme on uniform mesh. The convergence of the scheme, in particular for r = 1, is analyzed for nonsmooth solutions and concluded for smooth solutions. Finally, the accuracy of the scheme is verified by analyzing the error through a few numerical examples.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.