Abstract

Proper initialization is one of the most important prerequisites for fast convergence of feedforward neural networks like high-order and multilayer perceptrons. This publication aims at determining the optimal variance (or range) for the initial weights and biases, which is the principal parameter of random initialization methods for both types of neural networks. An overview of random weight initialization methods for multilayer perceptrons is presented. These methods are extensively tested using eight real-world benchmark data sets and a broad range of initial weight variances by means of more than 30000 simulations, in the aim to find the best weight initialization method for multilayer perceptrons. For high-order networks, a large number of experiments (more than 200000 simulations) was performed, using three weight distributions, three activation functions, several network orders, and the same eight data sets. The results of these experiments are compared to weight initialization techniques for multilayer perceptrons, which leads to the proposal of a suitable initialization method for high-order perceptrons. The conclusions on the initialization methods for both types of networks are justified by sufficiently small confidence intervals of the mean convergence times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.