Abstract

High-order methods inspired by the multi-step Adams methods are proposed for systems of fractional differential equations. The schemes are based on an expansion in a weighted $$L^2$$L2 space. To obtain the schemes this expansion is terminated after $$P+1$$P+1 terms. We study the local truncation error and its behavior with respect to the step-size h and P. Building on this analysis, we develop an error indicator based on the Milne device. Methods with fixed and variable step-size are tested numerically on a number of problems, including problems with known solutions, and a fractional version on the Van der Pol equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.