Abstract
High order accurate Hermite methods for the wave equation on curvilinear domains are presented. Boundaries are treated using centered compatibility conditions rather than more standard one-sided approximations. Both first-order-in-time (FOT) and second-order-in-time (SOT) Hermite schemes are developed. Hermite methods use the solution and multiple derivatives as unknowns and achieve space-time orders of accuracy 2m−1 (FOT) and 2m (SOT) for methods using (m+1)d degree of freedom per node in d dimensions. The compatibility boundary conditions (CBCs) are based on taking time derivatives of the boundary conditions and using the governing equations to replace the time derivatives with spatial derivatives. These resulting constraint equations augment the Hermite scheme on the boundary. The solvability of the equations resulting from the compatibility conditions is analyzed. Numerical examples demonstrate the accuracy and stability of the new schemes in two dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.