Abstract

This paper deals with a high-order accurate discontinuous finite element method for the numerical solution of the Euler equations. The method combines two key ideas which are at the basis of the finite volume and of the finite element method, the physics of wave propagation being accounted for by means of Riemann problems and accuracy being obtained by means of high-order polynomial approximations within elements. We focus our attention on two-dimensional steady-state problems and present higher order accurate (up to fourth-order) discontinuous finite element solutions on unstructured grids of triangles. In particular we show that, in the presence of curved boundaries, a meaningful high-order accurate solution can be obtained only if a corresponding high-order approximation of the geometry is employed. We present numerical solutions of classical test cases computed with linear, quadratic, and cubic elements which illustrate the versatility of the method and the importance of the boundary condition

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.