Abstract

Increasing the operating temperature while enhancing detectivity is paramount for the advancement of HgCdTe infrared detectors. In this context, the integration of plasmonic nanostructures emerges as one of the most intriguing avenues, promising breakthroughs in infrared sensing capabilities. Multiphysics TCAD simulations of pin nanostructured focal plane photodetector arrays unveil the potential benefits of submicron absorber thicknesses, that promise detectivities more than twice as large as those provided by conventional 5μm-thick absorbers, besides enabling operating temperatures up to 260 K. Such performance increase is discussed through the combination of numerical simulations and quantum mechanical treatment based on the occupation number formalism, describing the interaction between plasmonic and optical cavity modes responsible for the spectral broadening of the optical response, allowing for good coverage of the entire mid-infrared band (λ∈[3,5]μm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.