Abstract

This paper presents for the first time Sb2S3-based solar cells operating on scaffold film. The scaffolds studied are Al2O3 and ZrO2, for which no electron injection from the Sb2S3 to the Al2O3 or ZrO2 is possible. As a result, one of the highest open circuit voltages (Voc) of 0.712 V was observed for this solar cell configuration. Electron dispersive spectroscopy (EDS) was performed, revealing complete pore filling of the Sb2S3 into the metal oxide pores (e.g., Al2O3 or ZrO2); the complete pore filling of the Sb2S3 is responsible for the photovoltaic performance (PV) of this unique solar cell structure. In addition, intensity modulated photovoltage and photocurrent spectroscopy (IMVS and IMPS) were performed to extract the electron diffusion length. Electron diffusion length in the range of 900 nm to 290 nm (depending on the light intensity) was observed, which further supports the operation of metal oxide/Sb2S3 solar cell configuration. Moreover, the Al2O3-based cells have longer electron diffusion lengt...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call