Abstract

Abstract Results are presented which show that the on-state clarity of a UV cured polymer dispersed liquid crystal (PDLC) film depends on the refractive index of the final polymer in the PDLC film, the ordinary refractive index of the liquid crystal, the solubility of the liquid crystal in the prepolymer and the rate at which the film is cured. Liquid crystal mixtures for use in PDLC films are chosen such that the ordinary refractive index of the liquid crystal is equal to the refractive index of the polymer matrix. It has been shown previously that a large quantity of liquid crystal remains dissolved in the polymer matrix, thus increasing the mismatch between the refractive index of the polymer and the ordinary refractive index of the liquid crystal and therefore reducing the on-state clarity. For liquid crystal mixtures which have high solubility in the prepolymer (>60 per cent) the mismatch in the refractive indices can be very large and the on-state clarity of the resulting film can be very poor (T on<70 per cent). Results are presented which show that it is possible to increase the on-state clarity of such films by increasing the rate at which these films cure. If the liquid crystal is less soluble in the prepolymer (<45 per cent), a PDLC film formed from such a liquid crystal/ prepolymer system often has very good on-state clarity (T on>75 per cent) be it cured slowly or quickly. Results are also presented which show that in order to achieve a true measure of on-state clarity it is necessary to use a small collection angle (<3°) in the detecting optics. If larger collection angles are used, the photodetector collects light which is scattered out of the specular beam, thus leading to a false measure of on-state clarity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.