Abstract

An 852 nm nanosecond laser pulse chain with a high on/off ratio is generated by chopping a continuous-wave laser beam using a Mach–Zehnder-type electro-optic intensity modulator (MZ-EOIM). The detailed dependence of the MZ-EOIM’s on/off ratio on various parameters is characterized. By optimizing the incident beam polarization and stabilizing the MZ-EOIM temperature, a static on/off ratio of is achieved. The dynamic on/off ratios versus the pulse repetition rate and the pulse duty cycle are measured and discussed. The high-on/off-ratio nanosecond pulsed laser system was used in a triggered single-photon source based on a trapped single cesium atom, which reveals clear antibunching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call