Abstract

Geographically separated populations may show high levels of genetic differentiation, depending on the levels of current and historical isolation. In the ancient landscape of the Pilbara region, there are few plant species with restricted distributions, and one such species, Aluta quadrata Rye & Trudgen, is restricted to three separate locations on the southern edge of the Hamersley Range. We investigated genetic diversity and differentiation among geographically isolated locations of A. quadrata, using 10 microsatellite loci to assess contemporary genetic structure, and sequences of seven chloroplast gene regions to infer historical isolation. Nuclear genetic diversity was moderate, with moderate to high genetic differentiation among the three locations, and low differentiation among populations within locations. In contrast, there was no detected variation in the chloroplast genome. The high genetic differentiation is consistent with limited contemporary connectivity among the geographically separated locations, although lack of chloroplast haplotype variation indicates that limited connectivity has occurred more recently and is not due to historical isolation. The level of differentiation suggests use of local seed sources for augmentation or establishment of populations within gene flow distance of existing populations, whereas an experimental translocation established on more distant sites could use mixed seed sources to maximise genetic diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call