Abstract

Aerobic environments exist widely in wastewater treatment plants (WWTP) and are unfavorable for greenhouse gas nitrous oxide (N2O) reduction. Here, a novel strain Pseudomonas sp. YR02, which can perform N2O reduction under aerobic conditions, was isolated. The successful amplification of four denitrifying genes proved its complete denitrifying ability. The inorganic nitrogen (IN) removal efficiencies (NRE) were >98.0% and intracellular nitrogen and gaseous nitrogen account for 52.6–58.4% and 41.6–47.4% of input nitrogen, respectively. The priority of IN utilization was TAN > NO3–-N > NO2–-N. The optimal conditions for IN and N2O removal were consistent, except for the C/N ratio, which is 15 and 5 for IN and N2O removal, respectively. The biokinetic constants analysis indicated strain YR02 had high potential to treat high ammonia and dissolved N2O wastewater. Strain YR02 bioaugmentation mitigated 98.7% of N2O emission and improved 32% NRE in WWTP, proving its application potential for N2O mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call