Abstract
While the identification of High Nature Value (HNV) farmland is possible using the different types of spatial information categories available at European scale, most data used is still too coarse and therefore only provides an approximate estimate of the presence of HNV farmland. This paper describes two promising methods using remote sensing – one for HNV farmland identification and one for change detection within HNV farmland. The performance of the two methods is demonstrated by detailed results for two case studies – the Netherlands for the HNV farmland identification, and Bulgaria for change detection within HNV farmland. An estimation of the presence of HNV farmland or of HNV farmland change can well be based on high-resolution satellite imagery, but the classification method must be adapted to regional characteristics such as field size and type of landscape. The temporal variability and bio-climatological characteristics across Europe do not allow for a simple European classification of HNV farmland. Also comparison between years is complicated because of the large impact of seasonal variation in the land cover expression and the complexity of the HNV farmland definitions. Although HNV farmland detection methods are promising, remote sensing alone does not yet provide the appropriate tools for adequate monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.