Abstract

We demonstrate Si-implanted AlN with high conductivity (>1 Ω−1 cm−1) and high carrier concentration (5 × 1018 cm−3). This was enabled by Si implantation into AlN with a low threading dislocation density (TDD) (<103 cm−2), a non-equilibrium damage recovery and dopant activation annealing process, and in situ suppression of self-compensation during the annealing. Low TDD and active suppression of VAl-nSiAl complexes via defect quasi Fermi level control enabled low compensation, while low-temperature, non-equilibrium annealing maintained the desired shallow donor state with an ionization energy of ∼70 meV. The realized n-type conductivity and carrier concentration are over one order of magnitude higher than that reported thus far and present a major technological breakthrough in doping of AlN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call