Abstract

This paper reports the observation of high-n lines in emission from n = 12-11, 13-12, 14-13 and 16-15 Rydberg transitions in H, Mg and Si in solar far IR spectra taken from balloon altitudes, in which the H I line intensities are found to exceed those from the heavier elements. Tentative identification is also made of the n = 8-7 hydrogen line in emission on 20 μm spectra taken from Mauna Kea. The characteristics of the hydrogen lines are compared with lower-n transitions seen in the Space Shuttle ATMOS spectra, in which Brackett, Pfund and n = 6 lines with Δn = 1, 2, 3 and 4 are seen as broad absorption features, while the n = 7-6 line shows a small emission peak within a broader absorption line and the n = 9-7, and possibly the 11-8, transitions appear as weak emission lines. These results indicate that the transformation from absorption to emission occurs at longer wavelengths for hydrogen lines than for those of heavier elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call