Abstract

BackgroundPlasmodium falciparum-resistance to sulphadoxine-pyrimethamine (SP) has been largely reported among pregnant women. However, the profile of resistance markers to SP dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) in the general population are varied and not frequently monitored. Currently, SP is used as partner drug for artemisinin combination therapy (SP-artesunate) in some sub-Saharan African countries or as a prophylactic drug in intermittent preventive treatment of malaria during pregnancy and infants and in seasonal malaria chemoprevention (SMC). Profiling of P. falciparum-resistant genotypes to SP is dynamic and critical in providing data that would be useful for malaria control programmes. This study assessed the profile of dhfr and dhps genes genotypes among individuals with malaria in Lagos, Nigeria.MethodsMolecular markers of SP resistance were identified by nested PCR and sequenced among malaria positive dried blood spots (DBS) that were collected from individuals attending health facilities from January 2013 to February 2014 and during community surveys from October 2010 to September 2011 across different Local Government Areas of Lagos State, Nigeria.ResultsA total of 242 and 167 samples were sequenced for dhfr and dhps, respectively. Sequence analysis of dhfr showed that 95.5% (231/242), 96.3% (233/242) and 96.7% (234/242) of the samples had N51I, C59R and S108N mutant alleles, respectively. The prevalence of dhps mutation at codons A437G, A613S, S436A, A581G, I431V and K540E were 95.8% (160/167), 41.9% (70/167), 41.3% (69/167), 31.1% (52/167), 25.1% (42/167), and 1.2% (2/167) respectively. The prevalence of triple mutations (CIRNI) in dhfr was 93.8% and 44.3% for the single dhps haplotype mutation (SGKAA). Partial SP-resistance due to quadruple dhfr-dhps haplotype mutations (CIRNI-SGKAA) and octuple haplotype mutations (CIRNI-VAGKGS) with rate of 42.6% and 22.0%, respectively has been reported.ConclusionsThere was increased prevalence in dhfr triple haplotype mutations when compared with previous reports in the same environment but aligned with high prevalence in other locations in Nigeria and other countries in Africa. Also, high prevalence of dhfr and dhps mutant alleles occurred in the study areas in Lagos, Nigeria five to eight years after the introduction of artemisinin combination therapy underscores the need for continuous monitoring.

Highlights

  • Plasmodium falciparum-resistance to sulphadoxine-pyrimethamine (SP) has been largely reported among pregnant women

  • There was increased prevalence in dhfr triple haplotype mutations when compared with previous reports in the same environment but aligned with high prevalence in other locations in Nigeria and other countries in Africa

  • High prevalence of dhfr and dhps mutant alleles occurred in the study areas in Lagos, Nigeria five to eight years after the introduction of artemisinin combination therapy underscores the need for continuous monitoring

Read more

Summary

Introduction

Plasmodium falciparum-resistance to sulphadoxine-pyrimethamine (SP) has been largely reported among pregnant women. The profile of resistance markers to SP dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) in the general population are varied and not frequently monitored. Profiling of P. falciparum-resistant genotypes to SP is dynamic and critical in providing data that would be useful for malaria control programmes. The efficacy of antimalarial medicines is critical to the implementation of effective malaria case management where patients confirmed to have malaria parasites are treated promptly. P. falciparum, developed resistance to both widely used medicines and are not currently recommended for the treatment of malaria as monotherapies in the general population. The malaria parasite’s resistance to SP is due to point mutations in target enzymes, dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) [3]. Resistance to SP and CQ were reported at different times in the history of anti-malarial medicine resistance [4, 5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call