Abstract
We investigated the role of endothelial glycocalyx and its component syndecan-1 protein in the pathophysiology of sepsis-induced vascular hyper-permeability and examined the therapeutic effects of high-molecular-weight sodium hyaluronate (HMW-SH).MethodsSepsis was induced by cotton smoke inhalation followed by intranasal administration of Pseudomonas aeruginosa in female (> 6 months) Balb/c and syndecan-1 knockout mice. Survival of mice, lung capillary endothelial glycocalyx integrity, lung water content, and vascular hyper-permeability were determined with or without HMW-SH treatment in these mice. Effects of HMW-SH on endothelial permeability and neutrophil migration were tested in in vitro setting.ResultsIn septic wildtype mice, we found a severely damaged pulmonary microvascular endothelial glycocalyx and elevated levels of shed syndecan-1 in the circulation. These changes were associated with significantly increased pulmonary vascular permeability. In septic syndecan-1 knockout mice, extravascular lung water content was higher, and early death was observed. The administration of HMW-SH significantly reduced mortality and lung water content in septic syndecan-1 knockout mice, but not in septic wildtype mice. In in vitro setting, HMW-SH inhibited neutrophil migration and reduced cultured endothelial cell permeability increases. However, these effects were reversed by the addition of recombinant syndecan-1 ectodomain.ConclusionsHMW-SH reduced lung tissue damage and mortality in the absence of syndecan-1 protein, possibly by reducing vascular hyper-permeability and neutrophil migration. Our results further suggest that increased shed syndecan-1 protein levels are linked with the inefficiency of HMW-SH in septic wildtype mice.
Highlights
The most common cause of death in the intensive care unit (ICU) is sepsis, a syndrome whose outcome is determined by the interaction of pathogens with the host immune system [1]
We found a severely damaged pulmonary microvascular endothelial glycocalyx and elevated levels of shed syndecan-1 in the circulation
high-molecular-weight sodium hyaluronate (HMW-Sodium hyaluronate (SH)) inhibited neutrophil migration and reduced cultured endothelial cell permeability increases
Summary
The most common cause of death in the intensive care unit (ICU) is sepsis, a syndrome whose outcome is determined by the interaction of pathogens with the host immune system [1]. In contrast to glycosaminoglycans (GAG), hyaluronan (hyaluronic acid) does not bind to proteoglycans, but instead interacts with cellular membrane CD44 glycoprotein; it is not sulfated and uncharged It can complex with other sulfated GAGs, enabling seclusion of water and stabilizing the gel-like structure of the glycocalyx [6]. The EGL interacts with a variety of enzymes, including endothelial nitric oxide synthase, angiotensinconverting enzymes, anti-thrombin III, apolipoprotein, and chemokines. It is involved in homeostasis, adherence of leukocyte and platelets, and transduction of shear stress signaling to the endothelium [7,8,9,10]. EGL is recognized as a critical player of the microvascular endothelial barrier function [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.