Abstract

AbstractRing‐opening polymerizations of ε‐caprolactone (εCL) were conducted in bulk at 120 °C with triphenyl bismuth, Ph3Bi, as an initiator or catalyst. Variation of the monomer–initiator ratio (M/I) allowed for a variation of the molecular weight, but not an accurate control. With an M/I ratio of 1 000:1 and ultra‐dry εCL, a number average molecular weight (corrected $\overline M _{\rm n}$) of 285 kDa was obtained corresponding to a degree of polymerization around 2 500. Addition of tetra(ethylene glycol) resulted in incorporation of this coinitiator and allowed for a better control of the molecular weight. Time–conversion curves revealed a long induction period followed by a conspicuous acceleration upon addition of a coinitiator (tetraethylene glycol). Model experiments demonstrated that Ph3Bi is unstable at 120 °C in the presence of water, oxygen, or alcohols and slowly a precipitate is formed which mainly consists of (PhBiO)x. Ph2BiOR groups formed by side reactions seem to be the true initiators.magnified image

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call