Abstract

High mobility, solution-processed field-effect transistors are important building blocks for flexible electronics. Here we demonstrate the alignment of semiconducting, colloidal ZnO nanorods by a simple solvent evaporation technique and achieve high electron mobilities in field-effect transistors at low operating voltages by electrolyte-gating with ionic liquids. The degree of alignment varies with nanorod length, concentration and solvent evaporation rate. We find a strong dependence of electron mobility on the degree of alignment but less on the length of the nanorods. Maximum field-effect mobilities reach up to 9 cm(2) V(-1) s(-1) for optimal alignment. Because of the low process temperature (150 °C), ZnO nanorod thin films are suitable for application on flexible polymer substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.