Abstract

AbstractThe electrical contact is one of the main issues preventing semiconducting 2D materials to fulfill their potential in electronic and optoelectronic devices. To overcome this problem, a new approach is developed here that uses chemical vapor deposition grown multilayer graphene (MLG) sheets as flexible electrodes for WS2 field‐effect transistors. The gate‐tunable Fermi level, van der Waals interaction with the WS2, and the high electrical conductivity of MLG significantly improve the overall performance of the devices. The carrier mobility of single‐layer WS2 increases about a tenfold (50 cm2 V−1 s−1 at room temperature) by replacing conventional Ti/Au metal electrodes (5 cm2 V−1 s−1) with the MLG electrodes. Further, by replacing the conventional SiO2 substrate with a thin (1 µm) parylene‐C flexible film as insulator, flexible WS2 photodetectors that are able to sustain multiple bending stress tests without significant performance degradation are realized. The flexible photodetectors exhibited extraordinarily high gate‐tunable photoresponsivities, reaching values of 4500 A W−1, and with very short (<2 ms) response time. The work of the heterostacked structure combining WS2, graphene, and the very thin polymer film will find applications in various flexible electronics, such as wearable high‐performance optoelectronics devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call