Abstract

We show that hydrogenated amorphous silicon thin-film transistors (a-Si:H TFT's) with active layer thickness of 13 nm perform better for display applications than devices with thicker 50-nm active layers. A direct comparison of a-Si:H TFT's fabricated using an i-stopper TFT structure shows that ultrathin active layers significantly improve the device characteristics. For a 5-μm channel length TFT, the linear region (V/sub DS/=0.1 V) and saturation region mobilities increase from 0.4 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /V/spl middot/s and 0.7 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /V/spl middot/s for a 50-nm thick active layer a-Si:H device to 0.7 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /V/spl middot/s and 1.2 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /V/spl middot/s for a 13-nm thick active layer a-Si:H layer device fabricated with otherwise identical geometry and processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.