Abstract

Charge transport in crystalline organic semiconductors (OSCs) is considerably hindered by low-frequency vibrations introducing dynamic disorder in the charge transfer integrals. Recently, we have shown that the contributions of various vibrational modes to the dynamic disorder correlate with their Raman intensities and suggested a Raman-based approach for estimation of the dynamic disorder and search for potentially high-mobility OSCs. In the present paper, we showcase this approach by revealing the highest-mobility OSC(s) in two series of crystalline naphthalene diimide derivatives bearing alkyl or cycloalkyl substituents. In contrast to our previous studies, Raman spectra are not measured, but are instead calculated using periodic DFT. As a result, an OSC with a potentially high charge mobility is revealed in each of the two series, and further mobility calculations corroborate this choice. Namely, for the naphthalene diimide derivatives with butyl and cyclopentyl substituents, the estimated room-temperature isotropic electron mobilities are as high as 6 and 15 cm2 V-1 s-1, respectively, in the latter case even exceeding 20 cm2 V-1 s-1 in a two-dimensional plane. Thus, our results highlight the potential of using the calculated Raman spectra to search for high-mobility crystalline OSCs and reveal two promising OSCs, which were previously overlooked.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.