Abstract

The crystallization process of hydrogen doped In2O3:H (IOH) films is investigated with energy-dispersive X-ray diffraction measurements. At annealing temperatures between 125 and 150°C crystallization of 220nm thin films occurs within only 2min, and the percentage of the crystalline phase does not change anymore when the temperature is raised above the crystallization temperature of 150°C. Maximum electron mobilities above 100cm2/Vs have been reached after crystallization. The IOH films were integrated as front contact into amorphous/crystalline silicon heterojunction cells and compared to In2O3:Sn (ITO) front contacts. Cells with ITO/IOH bilayer front contacts show a slightly lower open circuit voltage because of the a-Si:H passivation layer degradation caused by the longer annealing process needed for the crystallization of the bilayers, while all cells reach total area efficiencies around 20%. IOH films were also implemented as silver free back contact for μc-Si:H cells, and show higher short-circuit current densities than ZnO:Al back contacts because of the higher near-infra-red transmission of IOH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.