Abstract

Cognitive dysfunction, sickness-like behavior, for instance, anxiety, and depression are common aspects of neuropsychiatry often associated with neurodegenerative disorders. Growing evidence suggests that high mobility group box 1 (HMGB1) may act as a proinflammatory cytokine that aggravates neurobehavioral dysfunction. However, the detailed underlying mechanism is still elusive. Here we focus on determining the relationship between lipopolysaccharide (LPS)-induced neuroinflammation (in both in vitro and in vivo models), cognitive dysfunction, sickness-like behavior and thus decode the impact of HMGB1 inhibition (using Glycyrrhizin; Gcy as an antagonist). Using a mice model of repeated LPS (1mg/kg, i.p. for 4days) injections, we found that LPS induced neurobehavioral deficit and a strong proinflammatory response with increased proinflammatory markers, including tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and iNOS (inducible nitric oxide synthase) at 7days after the final dose of LPS compared to control animals. Our findings suggest that neurobehavioral dysfunction strongly correlates with the proinflammatory immune response following LPS stimulation. In vitro Gcy pretreatment to LPS-activated BV2 microglia cells significantly reduced nitrite and reactive oxygen species production, along with diminished expression of classical proinflammatory cytokines (TNF-α, IL-1β, IL-6, iNOS). These key proinflammatory changes with LPS and Gcy treatment are also found in vivo mice model and correlate with improved cognitive function and reduced anxiety/depression. Together, these results show thatblocking HMGB1 using Gcy abrogated the cognitive dysfunction, sickness-like behavior of anxiety and depression induced by LPS which can be a promising avenue for crucial neurobehavioral dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call