Abstract
We report on the fabrication and characterization of high-quality chemical vapor-deposited (CVD) bilayer graphene (BLG). In particular, we demonstrate that CVD-grown BLG can be detached mechanically from the copper foil by a hexagonal boron nitride (hBN) crystal after oxidation of the copper-to-BLG interface. Confocal Raman spectroscopy reveals an AB-stacking order of the BLG crystals and a high structural quality. From transport measurements on fully encapsulated hBN/BLG/hBN Hall bar devices, we extract charge carrier mobilities up to 180 000 cm2/(Vs) at 2 K and up to 40 000 cm2/(Vs) at 300 K, outperforming state-of-the-art CVD bilayer graphene devices. Moreover, we show an on-off ratio of more than 10 000 and a band gap opening with values of up to 15 meV for a displacement field of 0.2 V/nm in such CVD grown BLG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.