Abstract
High-mobility organic transistors are fabricated on both surfaces of approximately 1-μm-thick rubrene crystals, molecularly flat over an area of 10×10μm2. A thin platelet of 9,10-diphenylanthracene single crystal and surface-passivated SiO2 are used for the gate insulators. Because of the minimized densities of hole-trapping levels at the interfaces and in the rubrene crystal, the field-induced carriers do not necessarily reside near the interface but are distributed in the bulk of the semiconductor by adjusting the two gate voltages. Making use of the highly mobile carriers in the inner crystal, the mobility is maximized to ∼43cm2∕Vs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.