Abstract

We investigate ambipolar charge transport in organic field-effect transistors (OFETs) with copper-phthalocyanine (CuPc) as active material. It is shown that charge carrier mobilities can be increased by at least one order of magnitude using the long-chain alkane tetratetracontane (TTC) as a passivation layer on top of silicon dioxide. TTC and CuPc films are characterized by atomic force microscopy and x-ray diffraction. TTC forms a highly crystalline layer that passivates electron traps on the SiO2 surface very efficiently and serves as a template for the growth of CuPc films with significantly improved crystallinity. High electron mobilities comparable to the values reported on single crystals are reached. We show that the contact resistance for hole transport as determined by the transmission line method can be reduced considerably by using organic charge-transfer complexes as top contacts in OFETs based on CuPc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call