Abstract

In this article, we fabricated amorphous InSnO thin film transistors (TFTs) with exceedingly high mobility and low thermal budget. The device is annealed only at a low temperature of 150 °C, a field-effect mobility (μFE) of 70.53 cm2/V s, a subthreshold swing of 0.25 V/decade, an on/off current ratio over 108, and a reasonable threshold voltage shift under negative bias stress. The influence of thermal annealing on amorphous InSnO TFTs was investigated by systematically analyzing the crystallization, surface morphology, internal chemical state, and energy band relationship of the InSnO thin film. Amorphous InSnO films deposited at room temperature have a sparse and porous loose structure, which has carrier scattering caused by poor film quality, resulting in low mobility and few free carriers in the film. With the increase in the annealing temperature, the In and Sn metal cations are further oxidized, increasing the carrier concentration in the film and forming a dense M–O–M network when annealed at 150 °C. With the further increase in the annealing temperature, a large number of thermally excited free electrons make the device appear metal like conductivity. This paper expands the research on a high electron concentration InSnO material as the active layer and promotes the development of amorphous oxide semiconductors in high mobility and flexible TFTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.