Abstract

The carbon fiber reinforced plastics (CFRP) are still limited the used in the automotive industry mainly by the weak interfacial adhesion between the fiber and polymer matrix . Herein, to improve interfacial interactions between the carbon fiber (CF) and polypropylene (PP) matrix, poly(dimethylaminoethyl methacrylate)- b -poly(methyl methacrylate) (PDMAEMA- b -PMMA, PDM) compatibilizers are applied to functionalize the CF surface through a covalent bonding with epoxide groups on the chemically modified CF surface with tertiary amines in the PDMAEMA block, which induced intermolecular entanglement with PP chains with the PMD compatibilizers. The acquired compatibilizer-functionalized CF (CECF) was applied to fabricate PP composites by a melt-mixing method. The highly improved interfacial adhesion between the CECF and PP was confirmed by evaluating thermal, morphological, rheological, and mechanical properties. Based on the significantly enhanced interfacial adhesion, notably, the tensile strength and modulus of the CECF/PP composite exhibited a massive increase by ca. 312% and 664%, respectively, relative to those of the PP resin. The Ashby plot facilitated understanding that the acquired mechanical properties of the CECF/PP composite showed a relatively ideal position compared to reported PP composites and centered on the commercially available region in automotive components. • Applied carbon fibers were modified by covalent fuctionalization. • Rationally designed compatibilizers offer enhanced interfacial adhesion. • CECF/PP composites achieved significantly high mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.