Abstract

The characteristic biology and wide distribution of hagfish species makes them relevant for use in pollution biomonitoring at great water depths, particularly in regions where deep-water oil production may take place. The exposure of fish to petrogenic contaminants can normally be detected from the level of polycyclic aromatic hydrocarbon (PAH) metabolites in bile fluid. Some of these metabolites are strong fluorophores, allowing analytical detection by means of simple fluorometric techniques such as fixed wavelength fluorescence (FF) and synchronous fluorescence scanning (SFS). In the present study bile from Atlantic hagfish ( Myxine glutinosa) collected in pristine areas (Barents Sea and southwestern Norway) displayed strong bile fluorescence levels, suggesting the presence of PAH contaminants. However, gas-chromatography–mass spectrometry (GC–MS) analyses ruled out PAHs as the origin for this fluorescence signal. Rather, the bile of Myxine contains components resulting in unusually strong background fluorescence interfering at the wavelength pairs used for detection of PAH metabolites. Possible background for the observed matrix interference and implications for detection of PAH metabolites in hagfish is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.