Abstract

Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) has become an important method for identifying peptides in neural tissues. The ultra-high-mass resolution and mass accuracy of MALDI-FTMS, in combination with in-cell accumulation techniques, can be used to advantage for the analysis of complex mixtures of peptides directly from tissue fragments or extracts. Given the diversity within the decapods, as well as the large number of extant species readily available for analysis, this group of animals represents an optimal model in which to examine phylogenetic conservation and evolution of neuropeptides and neuropeptide families. Surprisingly, no large comparative studies have previously been undertaken. Here, we have initiated such an investigation, which encompasses 32 species spanning seven decapod infraorders. Two peptides, APSGFLGMRamide and pQDLDHVFLRFamide, were detected in all species. A third peptide, GYRKPPFNGSIFamide, was detected in all species except members of the Astacidean genus Homarus, where a Val 1 variant was present. Our finding that these peptides are ubiquitously (or nearly ubiquitously) conserved in decapod neural tissues not only suggests important conserved functions for them, but also provides an intrinsic calibrant set for future MALDI-FTMS assessments of other peptides in this crustacean order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.