Abstract

ABSTRACTPulsations and binarity are both common features of massive stars. The study of pulsating massive stars in eclipsing binary systems holds great potential for constraining stellar structure and evolution theory. However, prior to the all-sky Transiting Exoplanet Survey Satellite (TESS) mission, few such systems had been discovered or studied in detail. We have inspected the TESS light curves of a large number of eclipsing binaries known to contain high-mass stars, and compiled a list of 18 objects which show intrinsic variability. The light curves were modelled both to determine the physical properties of the systems, and to remove the effects of binarity in order to leave residual light curves suitable for asteroseismic analysis. Precise mass and radius measurements were obtained for δ Cir, CC Cas, SZ Cam V436 Per and V539 Ara. We searched the residual light curves for pulsation signatures and, within our sample of 18 objects, we find six definite and eight possible cases of β Cephei pulsation, seven cases of stochastic low-frequency (SLF) variability, and eight instances of possible slowly pulsating B (SPB) star pulsation. The large number of pulsating eclipsing systems we have identified makes asteroseismology of high-mass stars in eclipsing binaries a feasible avenue to constrain the interior physics of a large sample of massive stars for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call