Abstract

Superconductors are key materials for shielding quasi-static magnetic fields. In this work, we investigated the shielding properties of an MgB2 cup-shaped shield with small aspect-ratio of height/outer radius. Shape and aspect-ratio were chosen in order to address practical requirements of both high shielding factors (SFs) and space-saving solutions. To obtain large critical current densities (Jc), which are crucial for achieving high magnetic-mitigation performance, a high-purity starting MgB2 powder was selected. Then, processing of the starting MgB2 powder into high density bulks was performed by spark plasma sintering. The as-obtained material is fully machinable and was shaped into a cup-shield. Assessment of the material by scaling of the pinning force showed a non-trivial pinning behaviour. The MgB2 powder selection was decisive in enlarging the range of external fields where efficient shielding occurs. The shield’s properties were measured in both axial- and transverse-field configurations using Hall probes. Despite a height/outer radius aspect ratio of 2.2, shielding factors higher than 104 at T = 20 K up to a threshold field of 1.8 T were measured in axial-field geometry at a distance of 1 mm from the closed extremity of the cup, while SFs > 102 occurred in the inner half of the cup. As expected, this threshold field decreased with increased temperature, but SFs still exceeding the above mentioned values were found up to 0.35 T at 35 K. The shield’s shape limits the SF values achievable in transverse-field configuration. Nevertheless, the in-field Jc of the sample supported SFs over 40 at T = 20 K up to a field of 0.8 T, 1 mm away from the cup closure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.