Abstract

We report the charge-order to ferromagnetic phase transition induced by pulsed high magnetic field and impurity doping effects in manganites La0.4Ca0.6(Mn1−yCry)O3 (0 ≤ y ≤ 0.2). Significant charge-order suppression and ferromagnetic tendency upon the Cr3+-doping are evidenced, and three different ground states are identified, namely the charge-order state, the phase separated state, and the spin-glass like state. Phase diagram in the H-y plane at 4.2 K is determined by the high magnetic field study, in which the charge-order and ferromagnetic phase boundary is clearly figured out. The critical magnetic field for melting the charge-order phase of La0.4Ca0.6MnO3 is revealed to reach up to 46 T at 4.2 K. Interestingly, distinct responses of the three states to the high magnetic field are observed, indicating the special physics regarding the charge order melting process in each state. The mechanism of the doping induced charge-order suppression and ferromagnetism promotion can be understood by the competition between the antiferromagnetic interaction of Cr-Mn and local enhancement of electron hopping by Cr3+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call