Abstract

The suppression of the gradient-drift driven instability and the transition to the high-magnetic-confinement mode are experimentally observed in a cylindrical partially magnetized E×B plasma using an additional biasable electrode installed at the radial edge. When a positive voltage is applied to the electrode, an electron-loss channel forms in its direction, breaking the spatially symmetric nonambipolar flow. Finally, in the steady state, the plasma density tends to peak in the plasma core, approaching plasma densities that are four times larger than those observed in the case where the instability is the strongest. A high-magnetic-confinement mode with a reduced edge-to-center density ratio of 0.16 is observed, which demonstrates that the saturation of magnetic confinement due to the gradient-drift driven instability can be prevented by an asymmetric nonambipolar flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.