Abstract
Lithium metal has a very outstanding theoretical capacity (3860 mAh/g) and is one of the most superior anode materials for high energy density batteries. However, the uncontrollable dendrite growth and the formation of “dead lithium” are the important hidden dangers of short cycle life and low safety. However, the uncontrollable dendrite growth and the formation of dead lithium leads to short cycle life and hidden danger, which hinder its practical application. Controlling the nucleation and growth process of lithium is an effective strategy to inhibit lithium dendrite. Herein, a simple in situ self-catalytic method is used to construct nitrogen doped carbon nanotube arrays on stainless steel mesh (N-CNT@SS) as a lithium composite anode. The N-doped CNTs provide a great number of N-functional groups, which enhance the lithiophilic of anode and provide a large number of uniform nucleation sites, hence it has excellent structural stability for cycles. The arrays provide neat lithium-ion transport channels to uniform lithium-ion flux and inhibits dendrite generation, revealed by the COMSOL multi-physics concentration field simulation. The N-CNT@SS composite anode sustain stable at 98.9% over 300 cycles at 1 mA/cm2. N-CNT@SS as the anode is coupled LiFePO4 (LFP) as the cathode construct a full battery, demonstrating excellent cycling stability with a capacity of 152.33 mAh/g and capacity retaining ratio of 95.4% after 100 cycles at 0.5 C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.