Abstract

A high-linearity AlGaAs/GaAs power heterojunction bipolar transistor (HBT) is developed for personal digital cellular phones. For compact chip layout, thermal design was considered. To improve power performance, proton implantation, optimum alloy condition for collector electrodes, and multiple via holes were used. A 2400-μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> -emitter-area HBT fabricated on a 0.5×0.67 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> substrate exhibits adjacent channel leakage powers below -53 dBc for 0.95- and 1.5-GHz /spl pi//4-shifted QPSK modulated input signals at a low collector-emitter voltage of 3.4 V. The HBT produces a 31.7-dBm output power, 50% power-added efficiency, and 15-dB linear power gain at 0.95 GHz, and produced a 31.3-dBm output power, 52% power-added efficiency, and 11.5-dB linear power gain at 1.5 GHz. These results were achieved on about one-fifth of the substrate area of conventional GaAs FETs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.