Abstract
This article presents a design optimization method for maximizing lift without increasing the drag of multielement airfoils at takeoff and landing configurations. It uses an incompressible Navier-Stokes flow solver (INS2D), a chimera overlaid grid system (PEGSUS), and a constrained numerical optimizer (DOT). Aerodynamic sensitivity derivatives are obtained using finite differencing. The method is first validated with single-element airfoil designs and then applied to three-element airfoil designs. Reliable design results are obtained at reasonable costs. Results demonstrate that numerical optimization can be an attractive design tool for the development of multielement high-lift systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.