Abstract

A Cu-azolate metal-organic framework (MOF) uptakes stoichiometric loadings of Groups 1 and 2 metal halides, demonstrating efficient reversible release and reincorporation of immobilized anions within the framework. Ion-pairing interactions lead to anion-dependent Li+ and Mg2+ transport in Cu4(ttpm)2·0.6CuCl2, whose high surface area affords a high density of uniformly distributed mobile metal cations and halide binding sites. The ability to systematically tune the ionic conductivity yields a solid electrolyte with a Mg2+ ion conductivity rivaling the best materials reported to date. This MOF is one of the first in a promising class of frameworks that introduces the opportunity to control the identity, geometry, and distribution of the cation hopping sites, offering a versatile template for application-directed design of solid electrolytes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.