Abstract

Several studies have associated platelets (PLTs) to NSCLC prognosis. To understand the role of PLTs in immunotherapy-treated patients, we used blood samples of NSCLC patients at different TNM stage. We found that PLTs count and the expression of PD-L1 (pPD-L1) were significantly higher in NSCLC patients at Stage IV than Stage I-III and healthy subjects. The presence of high pPD-L1 was associated to upregulated genes for the extracellular matrix organization and tumor immunosuppression. When patients’ survival was correlated to the levels of pPD-L1, longer survival rate was observed, but not when progression disease occurred. The in vitro stimulation of pPD-L1 with Atezolizumab induced CXCL4 release, accompanied by higher levels of TGFβ at the time of drug resistance when the levels of CD16, CD32 and CD64 significantly increased. Leiden-clustering method defined the phenotype of PLTs which showed that the ezrin-radixin-moesin (ERM) family proteins, underlying the PD-L1 signalosome, were involved in high pPD-L1 and higher survival rate. These data imply that Stage IV NSCLC patients characterized by high pPD-L1 are associated with longer progression-free survival rate because the blockade of pPD-L1 by Atezolizumab avoids the exacerbation of a T cell-mediated immune-suppressive environment. pPD-L1 could be an easy-to-use clinical approach to predict ICI responsiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call