Abstract

Background and aimsExtracellular matrix (ECM) homeostasis plays a crucial role in metabolic plasticity and endocrine function of adipose tissue. High levels of intracellular endotrophin, a cleavage peptide of type VI collagen alpha 3 chain (Col6a3), have been frequently observed in adipocyte in obesity and diabetes. However, how endotrophin intracellularly traffics and influences metabolic homeostasis in adipocyte remains unknown. Therefore, we aimed to investigate the trafficking of endotrophin and its metabolic effects in adipocytes depending on lean or obese condition. MethodsWe used doxycycline-inducible adipocyte-specific endotrophin overexpressed mice for a gain-of-function study and CRISPR-Cas9 system-based Col6a3-deficient mice for a loss-of-function study. Various molecular and biochemical techniques were employed to examine the effects of endotrophin on metabolic parameters. ResultsIn adipocytes during obesity, the majority of endosomal endotrophin escapes lysosomal degradation and is released into the cytosol to mediate direct interactions between SEC13, a major component of coat protein complex II (COPII) vesicles, and autophagy-related 7 (ATG7), leading to the increased formation of autophagosomes. Autophagosome accumulation disrupts the balance of autophagic flux, resulting in adipocyte death, inflammation, and insulin resistance. These adverse metabolic effects were ameliorated by either suppressing ATG7 with siRNA ex vivo or neutralizing endotrophin with monoclonal antibodies in vivo. ConclusionsHigh levels of intracellular endotrophin-mediated autophagic flux impairment in adipocyte contribute to metabolic dysfunction such as apoptosis, inflammation, and insulin resistance in obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.