Abstract
To obtain bacterial-mediated oncogenic transformation of plants, the transferred DNA (T-DNA) of the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens is transferred to its plant host cells during infection. The initial phases of transformation involve the processing of the T-DNA in the bacterial cell after induction of the vir genes located on the Ti plasmid. The kinetics and conditions of this processing were examined and upon induction with acetosyringone up to 40% of the left and right borders of the T-DNA were cleaved. This cleavage was dependent upon virA, virG, and VirD and was rec-independent. Processed T-DNA was observed within 30 min after induction and was delayed by an increased concentration of phosphate in the induction medium. When DNA was isolated in the absence of protease treatment, the DNA fragment corresponding to the left side of the cut at both the left and right border region exhibited gel retardation, suggesting one or more "pilot" proteins may be involved in T-DNA transfer. Although the relative abundance of a processed product does not necessarily imply relative importance, the preponderance of double-stranded cleavage products suggests that double-stranded T-DNA should be considered as a possible intermediate in T-DNA transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.