Abstract
Auto-infection (infection arising from inoculum produced on the same host unit) is common in polycyclic plant pathogens, but often neglected in experimental and theoretical studies, which focus instead on infection of new hosts (allo-infection). Here we test the hypothesis that high auto-infection, as observed for leaf infecting fungal pathogens, could select for short latent periods. An individual-based simulation model keeps track of lesions, resulting from the spread of spores, between and within individual leaves. Linked to a trade-off between latent period and spore production capacity, as observed for Puccinia triticina on wheat, the adaptation of the latent period is analysed for different levels of auto-infection using the methods of pairwise invasibility plots. Results suggest that increased auto-infection selects for reduced latent periods. A reduction in leaf longevity also selects for reduced latent periods, which is most obvious for a relatively low ratio of auto- to allo-infection. This study is the first to consider the effect of auto-infection on the evolution of pathogen life history traits. The fact that auto-infection could drastically reduce pathogen latent periods highlights the need for more research in this area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.