Abstract

We investigated morpho-physiological plasticity in the leaves of Ocotea odorifera trees growing under different environmental conditions in a fragmented forest. Microclimatic data were collected in a pasture matrix, forest edge, and forest interior in three Atlantic Forest fragments. Leaf gas exchange, as well as leaf anatomy in paradermal and transversal sections, were evaluated in individuals in these environments. Radiation intensity and temperature had higher effects in the pasture matrix compared with the forest interior and forest edge. However, internal portions of the canopy did not exhibit significant variation in radiation or temperature. External canopy leaves exhibited higher net photosynthesis in plants from the pasture matrix, but there was higher net photosynthesis for internal leaves from the shaded forest interior. Variation in net photosynthesis and other gas-exchange parameters were related to thinner shade leaves in forest interior individuals, and internal leaves with lower stomatal density. Although the pasture matrix, forest edge, and forest interior experienced differences in light and temperature, leaf position in the canopy produced microclimatic variations, which modified gas exchange and anatomy. Thus, O. odorifera shows the potential for reforestation programs because of its high leaf plasticity, which will enable it to overcome variations in light and temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call