Abstract

A complete chemical synthesis and assembly of genes for the production of human immunodeficiency virus type-I protease (HIV-PR) and its precursors are described. The T7 expression system was used to produce high levels of active HIV-PR and its precursors in Escherichia coli inclusion bodies. The gene encoding the open reading frames of HIV-PR was expressed in E. coli as a 10-kDa protein, while the genes encoding HIV-PR precursors were expressed as larger proteins, which were partially processed in E. coli to the 10-kDa form. These processing events are autoproteolytic, since a single-base mutation, changing the active-site aspartic acid to glycine, completely abolished the conversion. HIV-PR can be released with 8 M urea from washed cellular inclusion bodies, resulting in a preparation with few bacterial host proteins. After refolding, this preparation contains no nonspecific protease or peptidase activities. The recombinant HIV-PR isolated from inclusion bodies cleaves HIV-PR substrates specifically with a specific activity comparable to column-purified HIV-PR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call