Abstract

E2-Spy (abbreviated as ES) plays a vital role as a component in the Bacterial-Like Particles (BLPs) vaccine against classical swine fever virus (CSFV). This vaccine demonstrates remarkable immunoprotection, highlighting the importance of augmenting ES production in the development of CSFV subunit vaccines. In this study, a Pichia pastoris strain capable of high-yield secretory production of ES was developed through signal peptide engineering, gene dosage optimization and co-expression of molecular chaperones. Initially, a hybrid signal peptide cSP3 was engineered, leading to a 3.38-fold increase in ES production when compared to the control strain 1-α-ES. Subsequently, cSP3 was evaluated for its expression efficiency alongside different commonly used signal peptides under multicopy conditions. SDS-PAGE analysis revealed that 2-αd14-ES exhibited the highest ES production, displaying a 4.38-fold increase in comparison to 1-α-ES. Afterwards, SSA1, YDJ1, BIP, LHS1, and their combinations were integrated into 2-αd14-ES, resulting in a 1.92-fold rise in ES production compared to 2-αd14-ES (equivalent to a 6.18-fold increase compared to 1-α-ES). The final yield of ES was evaluated as 168.3 mg/L through comparison with serially diluted BSA protein bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call