Abstract

IS150 contains two tandem, out-of-phase, overlapping genes, ins150A and ins150B, which are controlled by the same promoter. These genes encode proteins of 19 and 31 kD, respectively. A third protein of 49 kD is a transframe gene product consisting of domains encoded by both genes. Specific -1 ribosomal frameshifting is responsible for the synthesis of the large protein. Expression of ins150B also involves frameshifting. The IS150 frameshifting signals operate with a remarkably high efficiency, causing about one third of the ribosomes to switch frame. All of the signals required for this process are encoded in a 83-bp segment of the element. The heptanucleotide A AAA AAG and a potential stem-loop-forming sequence mark the frameshifting site. Similar sequence elements are found in -1 frameshifting regions of bacterial and retroviral genes. A mutation within the stem-loop sequence reduces the rate of frameshifting by about 80%. Artificial transposons carrying this mutation transpose at a normal frequency, but form cointegrates at a approximately 100-fold reduced rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.