Abstract

Lacto-N-neotetraose (LNnT) is a critical component of human milk oligosaccharides. This study introduces a systems metabolic engineering method to produce LNnT in Escherichia coli. First, 12 target genes contributing to LNnT production were identified using a double-plasmid system. Subsequently, combinatorial optimization of the copy number was performed to tune the target gene expression strength. Next, the CRISPR/Cas9 system was used to block the UDP-Gal and UDP-GlcNAc competitive pathways, and the titer of LNnT reached 1.16 g/L (E27). Moreover, the lactoylglutathione lyase (GloA) was deleted to block the competing metabolite pathway from glycerol to lactate, and the titer of LNnT (1.46 g/L) was 26% higher than that of strain E27. Finally, the LNnT productivity was increased to 0.34 g/L/h in a 3 L bioreactor, which was 36% higher than the recently reported LNnT productivity. This research work opens an innovative framework for the effective production of LNnT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.