Abstract

As a promising feedstock, alkali-extracted xylan from lignocellulosic biomass is desired for producing xylose, which can be used for renewable biofuels production. In this study, an efficient pathway has been established for low-cost and high-yield production of xylose by hydrolysis of alkali-extracted xylan from agricultural wastes using an endo-1,4-xylanase (XYLA) from Bacillus safensis TCCC 111022 and a β-xylosidase (XYLO) from B. pumilus TCCC 11573. The optimum activities of recombinant XYLA (rXYLA) and XYLO (rXYLO) were 60℃ and pH 8.0, and 30℃ and pH 7.0, respectively. They were stable over a broad pH range (pH 6.0-11.0 and 7.0-10.0). rXYLO showed a relatively high xylose tolerance up to 100mM. Furthermore, the yield of xylose from wheat straw, rice straw, corn stover, corncob and sugarcane bagasse by rXYLA and rXYLO was 63.77%, 71.76%, 68.55%, 53.81%, and 58.58%, respectively. This study demonstrated a strategy to produce xylose from agricultural wastes by integrating alkali-extracted xylan and enzymatic hydrolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.