Abstract

Global warming and climate change because carbon dioxide (CO2) release to atmosphere is the forecasting challenges to human being. We are facing how to overcome the dilemma on the balance between economic and environment, thus taking more efforts on green processes to meet agreement of sustainable society are urgent and crucial. The absorption of CO2 by microalgae reduces the impact of CO2 on the environment. In this study, the CO2 removal efficiency was the highest in the culture of Cyanobacterium Synechococcus sp. PCC7002 (also called blue-green algae), at 2% CO2 to reach a value of 0.86 g-CO2/g-DCW. The main product of PCC7002 is C-phycocyanin (C-PC) which regarding to phycobilisome complex in all cyanobacterial species. A 160% increasing C-PC was achieved in the cultivation under 100 μmol/m2/s light intensity, 12:12 light-period with 2% CO2 at 30 °C. The mix-culture of nitric and ammonia ions had positive effect on the cell growth and C-PC accumulation, thus realized the highest yield of 0.439 g-CPC/g-DCW. Additionally, the partial purified C-PC displayed 89% antioxidant activity of 2,2-diphenyl-1-picryhydrazyl (DPPH) and 11% of superoxide free radical scavenging activity, respectively. The production of C-PC from PCC7002 reduced the CO2 emission and exhibited antibacterial activity against Escherichia coli and lead ion adsorption at room temperature, which has the great potential for eco-friendly application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call