Abstract

The present study was conducted to investigate the metabolic responses of glucose and lipid in large yellow croaker Larimichthys crocea (initial weight, 36.80 ± 0.39 g) to high level of dietary soybean oil. Three isonitrogenous (46% crude protein) and isolipidic (13% crude lipid) experimental diets were designed, with 100% fish oil (FO), 50% fish oil and 50% soybean oil (FS) and 100% soybean oil (SO), respectively. After a 12-week growth trial, the results showed that compared with FO group, contents n-6 PUFAs increased while the n-3 PUFAs decreased significantly both in liver and muscle in FS and SO groups. Concentrations of blood glucose, leptin, free fatty acid and total triglyceride reached the highest values in SO group, while blood insulin showed no significant difference among all groups. The gene expressions of insulin receptor substrate-2, glucose-6-phosphatase, phosphoenolpyruvate carboxykinase, fatty acid synthetase, and lipoprotein lipase increased, and the insulin receptor substrate-1, phosphotidylinsositol-3-kinase (PI3K), hexokinase, glycogen synthetase and glucose transporter 2 in liver decreased significantly in SO group. Meanwhile, the phosphorylation of protein kinase B (AKT) also decreased significantly in this group. These results suggested that high level of dietary soybean oil depressed PI3K/AKT signaling pathway, and then affected glucose and lipid metabolism by glycolysis, gluconeogenesis, glucose transportation, glycogenesis and lipogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call